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ABSTRACT. The Intensive Care Unit (ICU) represents a constrained health-
care resource, involving invasive procedures and high costs, with significant
psychological effects on patients and their families. The traditional approach
to ICU admissions relies on observable behavioral indicators like breathing
patterns and consciousness levels, which may lead to delayed critical care due
to deteriorating conditions. Therefore, in the ever-evolving healthcare land-
scape, predicting whether patients will require admission to the ICU plays a
pivotal role in optimizing resource allocation, improving patient outcomes, and
reducing healthcare costs. Essentially, in the context of the post-COVID-19
pandemic, aside from many other diseases, this prediction not only forecasts
the likelihood of ICU admission but also identifies patients at an earlier stage,
allowing for timely interventions that can potentially mitigate the need for
ICU care, thereby improving overall patient outcomes and healthcare resource
utilization. However, this task usually requires a lot of diverse data from dif-
ferent healthcare institutions for a good predictive model, leading to concerns
regarding sensitive data privacy. This paper aims to build a decentralized
model using deep learning techniques while maintaining data privacy among
different institutions to address these challenges.

1. INTRODUCTION

The COVID-19 pandemic confronted health systems worldwide with an unprece-
dented challenge. According to the World Health Organization (WHO), approxi-
mately 14.9 million deaths were associated with this novel coronavirus during 2020
and 2021 [I]. Surging cases overwhelmed hospitals and depleted essential resources
globally, especially in intensive care units (ICUs) where shortages of beds, equip-
ment, and staff severely constrained life-saving care [2].
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The ICU is a crucial but limited healthcare resource [3]. Especially under the
context of the COVID-19 era, a large number of cases have particularly stressed
ICU settings with an increased need for ICU beds [4]. As cases skyrocketed in
pandemic hotspots from Wuhan, Italy, to New York, ICUs were immediately over-
loaded with exceeding capacity [B] [6]. This emergency of ICU and other medical
resources scarcity extremely affected patient outcomes and mortality throughout
the pandemic [7]. Additionally, medical treatment in the ICU has the disadvan-
tages of possible invasive procedures [§], high cost, and significant psychological
effects on both patients, their families and the medical institution [9], compared to
the equivalent but earlier treatment outside the ICU. Moreover, the traditional ap-
proach to determining if someone should be admitted to the ICU primarily depends
on observable indicators such as the patient’s breathing pattern, consciousness, and
medical instability, which means decisions for sending some patients without no-
table into ICU are made at relatively later points waiting until the patient’s health
condition has already deteriorated [I0]. This decision-making strategy could po-
tentially result in delayed medical treatment, thus leading to a poor survival rate
and long-term effects on the patient’s physical condition[10].

To summarize, the challenges and disadvantage of critical care is: limited re-
sources, possible late admission decisions, and significant burden on different as-
pects of different groups. To solve the root cause, Machine Learning (ML) methods
have been proven as a robust tool to reduce the necessity for patients to be sent
to ICU by facilitating earlier clinical decision-making and critical care intervention
which in turn helps with better ICU resource allocation [I1] [12] [13]. A more ro-
bust model can help with making more accurate and reliable decisions for an earlier
intervention, which will lead to a positive change in survival rate, long-term effects,
and readmission rates among patients carrying a wide range of diseases [10] [I4]
[15]. However, creating a robust model that can produce reliable information also
necessitates access to a wide range of diverse data from different institutions [16],
which challenges data privacy and integrity significantly [I7]. We recognize the
importance of data privacy and the distributed nature of healthcare data, which
provides significant challenges to this traditional centralized approach. On the one
hand, healthcare data contains highly sensitive and private information, requiring
high privacy protection measures. However, healthcare data also distributed across
various countries and institutions, prevents data accessibility and holds back the
development of accurate predictive models. To alleviate the need for data transfer
between institutions, which is a primary concern of data privacy, this paper aims to
deploy a predictive model using decentralized deep learning architecture that en-
ables model transfer among different institutions to maintain data privacy, which
is commonly known as Federated Learning (FL) [I§].

FL has emerged as a promising approach for training machine learning models
in the biomedical field, specifically in healthcare, to address the challenges of data
privacy and data accessibility. By enabling collaborative model training without
the need for centralizing patient data, FL allows healthcare institutions to collec-
tively leverage their datasets while preserving data privacy [16]. For instance, in
the pioneering publication on FL in the medical domain, Sheller et al. [I9] have
successfully applied FL on studying brain tumor. The results showed that the deep
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learning model trained using FL could reach 99% of the performance of the same
model trained with the traditional data-sharing method, highlighting the potential
of this technique in maintaining data privacy while effectively utilizing distributed
healthcare data. Overall, this study aims to explore the potential of FL techniques
on deep learning models in improving the accuracy of ICU admission prediction
models and addressing the challenges posed by healthcare data privacy.

2. METHODS

2.1. Data Overview. The original data is provided by the Mexican Government
[20]. We translated the attributes and chose 21 medical-related features from the
data set for this research (Table 1). Irrelevant features, like registration ID, mi-
gration status, and whether the patient speak an indigenous language or not, were
dropped. The data set is being updated regularly. As of the day the research began,
1,048,575 records were collected.

TABLE 1. Table includes the features included in the dataset, 20
features and 1 target column.

| Name Type Description |
USMR Categorical medical units of the first, second or third level
Medical Unit Categorical type of institution that provided the care
Sex Categorical biological gender 1 for female and 2 for male
Patient Type Categorical  type of care. (1 = returned; 2 = hospitalization)
Date Died Date the date of death
Intubed Categorical whether the patient was connected to the ventilator
Pneumonia Categorical air sacs inflammation in the past
Age Discrete years of age
Pregnant Categorical whether the patient is pregnant or not.
Diabetes Categorical whether the patient has diabetes or not
COPD Categorical Chronic obstructive pulmonary disease
Asthma Categorical whether the patient has asthma or not
INMSUPR Categorical ~ whether the patient is immunosuppressed or not.
Hypertension Categorical whether the patient has hypertension or not
Other Disease Categorical whether the patient has other disease or not
Cardiovascular Categorical heart or blood vessels related disease
Obesity Categorical whether the patient is obese or not
Renal Chronic Categorical chronic renal disease
Tobacco Categorical whether the patient is a tobacco user
Classification Final = Discrete covid test findings. 1~3=COVID; >4=negative
ICU Categorical admitted to an Intensive Care Unit

2.2. Data Preprocessing. For this research, the categorical feature ICU was used
as the target attribute for prediction. Besides AGE and DATE DIED, all other cate-
gorical features implied if a record has the diseases or not. Among them, CLASSIFI-
CATION FINAL indicated whether a patient tested positive for COVID-19 or not.
The original data used 1 ~ 3 for positive, > 4 for negative, and we converted this
attribute into binary. DATE DIED indicates when the patient deceased. A empty
value in this column indicated that the person survived. The DATE DIED column
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was transformed into a binary attribute. Eventually, this column was dropped and
converted into records in ICU column. So, the final dataset, after dropping all
records with a null value (about 1% of the dataset), includes 189112 records that
are hospitalized. Within those records, Column ICU has 75011 (about 39.7% of
the entire dataset) entries indicating this patient will need critical medical care
and should consider early intervention. And, within all those 75011 records, 16397
records were originally included in the ICU column before the data processing.
The rest 58641 records came from the hospitalized records that died without being
sent into the ICU. Those records was originally from DATE DIED column (Figure
1). Because a patient died under hospitalized status but not in ICU indicates that
they were supposed to received early intervention medical care for a potential better
outcome, we combined the ICU and DATE DIED columns.

ﬂntwe dataset \
Hospitalized ﬂ
records
FIGURE 1. A Venn Diagram indicates the composition of the tar-
get column. The grey area is the records hospitalized. The orange

area is the final target group, which consists of ICU records and
records that died in the hospital but not in the ICU.

2.3. Baseline Training. To create a baseline understanding of our dataset and
test data cleaning, a series of traditional machine learning techniques were per-
formed on all of our datasets. Models like Decision Trees (DT) [2I], Random
Forests (RF) [22], Bayesian Classifiers (BC) [23], SVM [24], deep learning models
like Convolutional Neural Networks (CNN) [25], and Recurrent Neural Networks
(RNN) [26] were used. They mainly served as the comparison group that trained
on the global dataset without considering data privacy.

2.4. Federated Learning. Federated learning (FL) is a decentralized machine
learning approach that allows multiple devices or nodes to collaboratively update
a shared model and hold local data samples [I§] . In this research, the goal is to
develop a federated learning architecture that can retain moderate accuracy, recall,
and precision while not sharing the information between edges.

A global model was distributed physically to different medical institutions (Fig-
ure 2). After the local model was trained on each dataset. The updates from
different medical institutions were sent back to make the update. The following
Algorithm 1 explains the federated learning pipeline in more detail.
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FIGURE 2. around of Federated Learning pipeline with 4 datasets.
On the top is the Global Model, the first level (top down) is the
weight transfer back and forth between the global model and the
models on different edges. The second level (Model to Datashard)
indicates the training processes between locals models with local
data. The third level (Datashard to Model updated) indicates that
the updated weights of each local model are collected and ready to
compile into one global model update.

Algorithm 1 Basic Federated Learning Architecture
Wo,0 ~ Fy

Qy, 02, a3, (4

N =100

while n < N do
//initialize models on edges base on the global model
Wn,la Wn,27 Wn,37 Wn,4 = Wn,O

//Training each model on their dataset for one epoch
Woos Wi s Wy g~ Wi 1, Wh 0, Wiy 3, Wi 4

n,l»

//update the global model weight based on the weighted average
Whi1,0 = 041Wn,1 + angQ +asW,, 5+ 044Wn74

end while

The training ran 100 rounds in total. The local model trained on each edge for
1 epoch, which refers to local training. The updates of the global model were cal-
culated based on the weighted average of the models from different shards. During
the training, global accuracy and loss were monitored.
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3. RESULTS

3.1. Baseline Training’s performance. Accuracy, recall, and precision are mon-
itored for baseline training. Accuracy is the overall accuracy. Due to the nature of
binary classification, the recall and the precision are measured on the class indicat-
ing the need for critical care and early intervention. Overall accuracy ranges from
70% (DT) to 76% (DNN). Precision ranges from 65 % (DT) to 78% (RNN). Recall
ranges from 38% (SVM), to 59% (DNN) (Table 2).

TABLE 2. Baseline Training models’ prediction performance, need
add precision also

H Decision Tree ‘ Random Forest SVM ‘Bayesian Classifier =~ DNN ‘ CNN RNN ‘

Acc 70.82% 72.68% 73.49% 76.30% 76.39% | 76.25% 76.26%
Precision 65.74% 67.95% 88.22% 81.16% 76.14% | 77.56% 78.25%
Recall 55.34% 59.0% 38.35% 52.50% 59.02% | 56.53% 55.68%

3.2. Federated Learning’s performance.

3.2.1. Accuracy. Accuracy serves as a general measurement of the architectures
predicting power.

TP+ TN
TP+TN+FP+FN
Deep learning models like CNN, RNN, and DNN are used separately as the base

models for FL. The accuracy ranges from 76.18% to 76.28% on the global dataset
and performs equivalently well on each data shard (Table. 3).

Accuracy =

TABLE 3. Federated Learning model Accuracy

H Base Models Global Shardl Shard2 Shard3 Shard4 H
DNN 76.22% 76.14% 76.61% T76.59% 75.97%
CNN 76.18% 76.14% 76.40% 76.28% 75.90%
RNN 76.28% T76.17% 76.57% 76.40% 76.00%

3.2.2. Precision. Precision is measured by True Positive rate over True Positive rate
and False Positive rate. A way to interpret this is how many correct predictions
the model made about a class are correct among all predictions made for this class.

TP
TP+ FP

The precision of three FL architectures ranges from 74.75% by the CNN-based
model to 75.20% by the RNN-based model (Table. 3).

Precision =
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TABLE 4. Federated Learning architecture precision

H Base Models Global Shardl Shard2 Shard3 Shard4 H
DNN 74.83% T4.59% 74.54% 75.43% 74.76%
CNN 74.75% T4.82% 74.20% 75.13% 74.83%
RNN 75.20% 75.06% 74.70% T75.70% 75.34%

3.2.3. Recall. Recall is measured by the True Positive record number divided by
the sum of the True Positive record number and the False Negative record number.
Recall can be interpreted as among all records that need early intervention, how
many of them are successfully detected.

TP
TP+ FN

The recall rate for FL with DL models ranges from 60.07% by the RNN-based
model, to 60.84% by the DNN-based model (Table. 5).

Recall =

TABLE 5. Federated Learning architecture recall

H Base Models Global Shardl Shard2 Shard3 Shard4 H
DNN 60.84% 60.81% 60.9% 61.05% 60.61%
CNN 60.40% 60.44% 60.61% 60.34% 60.20%
RNN 60.07% 60.17% 60.43% 59.90% 59.78%

4. DISCUSSION

Our FL architecture with Deep Learning models reached 99.8% accuracy of the
baseline modeling, where data privacy is not well preserved (Figure 3). FL with
DNN models achieved 76.3% accuracy, which surpass all machine learning models
and some deep learning models that are trained on congregated dataset.

In the research, the focus is on the prediction of records that actually need
early medical care to prevent ICU entrance. So, the higher the measurement of
the precision, the more records that are predicted as needing ICU-level treatment
are correct. The precision of our FL architecture reached 85% (75.2% by FL with
RNN models compared to 88.22% by Bayesian Classifier) of maximum precision
from baseline training (Figure 4). However, the recall of Bayesian Classifier is
considered extremely low, only 38.35%. Therefore, Bayesian Classifier should be
considered as an outlier and not considered for the comparison. Then, the precision
of the highest FL architecture reached 92.7% of the highest precision by the SVM
from baseline training.

Recall plays a vital role in real-world applications, too. Based on the focus of
this research, the measuring for recall indicates how many actual records that need
ICU entrance have been successfully detected. The recall of our FL architecture
outperforms all the other models. The lowest recall by the CNN-based model in
FL architecture obtained a recall of 60.4%, compared to the highest recall by DNN



98 TAKESHI MATSUDA, TTANLONG WANG, AND MEHMET DIK

Global Accuracy

0.77

76.3% 76.3% 76.3% 104% oo 763%  76.3%

0.76
0.75
0.74 73.5%
0.73 72.7%
0.72
0.71 70.8%
o

Decision Random SVM  Bayesian CNN-FL RNN-FL DNN-FL

FIGURE 3. Global Accuracy for the FL. X-axis indicating with
model is trained and tested, the y-axis indicating the accuracy.
Dark blue indicating the federated learning design, and light blue
indicating the baseline traditional machine learning models’ re-
sults.

Recall&Precision Analysis

0.85
0.75

0.65

0.55
0.35

Decision Random SVM  Bayesian CNN-FL  RNN-FL DNN-FL

5

S
[l

B Recall Precision

FIGURE 4. Global Recall and Precision Analysis. Each pair of
columns consists of Recall (left, blue) and Precision (right, or-
gance). The darker pairs indicating the federated learning models
and its corresponding precision and recall. X-axis is the models
used, y-axis is the percentage for recall and precision.

alone with a recall of 59.02% in baseline training. This indicates our FL architec-
ture can successfully predict more records that need earlier ICU-level treatment.
The result also implies FL architecture can improve the recall of target attributes
in general.

Considering all three valuation factors, the FL architecture has proven to be a
robust tool for better overall accuracy and recall, and tantamount precision than
traditional machine learning. Most importantly, FL reaches the predicting power
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under the circumstance of keeping the privacy of data under no risk of leaking or
retrieving. The scalability of the architecture from a data perspective, the main
concern about ML in the medical field [17], can be improved.

5. LIMITATIONS & FUTURE WORK

Developing robust, trustworthy AI tools that preserve fairness is critically im-
portant, especially in high-stakes applications like healthcare. Achieving trustwor-
thiness encompasses attributes like explainability, fairness, privacy preservation,
and robustness. However, the overall prediction performance of health AI models
is often prioritized over potential biases they may have [27]. In FL, there are po-
tential risks of under-representing minority groups, if the contribution to the global
model from different edges is guided by the training size, which is statistical het-
erogeneity [28]. In the future, we would like to explore the potential of leveraging
fairness through multiple methods, like local debiasing [29] and fairer aggregation
strategies[28].

Although the FL system aims to address privacy concerns by keeping patients’
private data in local storage during training, potential security issues persist, par-
ticularly in the transmission of gradients and partial parameters, leading to indirect
privacy leakage [30]. Three main attack categories in FL are identified: Data poison-
ing attacks, involving the embedding of tainted data to compromise data integrity
[31]; Model poisoning, which manipulate machine learning models to produce in-
correct results [31]; and Inferring attacks, focused on detecting privacy records or
restoring training data [32]. Existing defense methodologies have some potential
in more research, and the need for stronger protection measures, such as anomaly
detection and data encryption, is emphasized to mitigate these attacks in the feder-
ated setting [31][32]. Future work on this should explore and develop more robust
protection methods.

There is rich literature discussing whether FL overfits or underfits under different
data quality, parameters’ sizes, and extents of the local updates [33] [34] [35]. Eval-
uation of overfitting and underfitting usually requires a validation dataset during
the training phase. However, traditionally collecting a validation dataset violates
the main data privacy protection schema provided by FL. A representative and ef-
fective validation set needs to combine a certain amount of data from each dataset
on the edge, but a congregated dataset is what FL trying to avoid due to privacy
concerns. Moreover, validation and testing datasets are usually not directly acces-
sible to the FL server [36], and the global model is tested on selected clients or data
shards separately. In the future, our team will investigate more about the necessity
of evaluating the global model of FL and its corresponding metrics.

An ICU decision will potentially put pressure on both medical institutions as well
as the patients themselves [9], both mentally and physically. Traditional Machine
Learning, even Federated Learning, produces a one-number confident prediction
that might worsen this situation. Ethically, using probability estimation instead
of one-point prediction could be a challenging but effective improvement to this
situation. Plus, due to the nature of most probability predictions that produce
a distribution of predictions as the output, incorporating differential privacy can
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add an extra layer of data protection as well as help balance the trade-off between
privacy and accuracy [37]. Inspired by this idea, we would like to further investigate
the feasibility of incorporating probability estimation and differential privacy in FL
architectures.

6. CONCLUSION

In conclusion, Federated Learning demonstrated to be an effective tool to help
clinical decision-making without losing data privacy. Particularly, our design of FL
outperformed other traditional machine learning and deep learning techniques on
the ICU admission data set. This design and architecture imply that, with the help
of FL, medical institutions can potentially make more effective decisions regarding
early interventions on patients to improve the treatment outcome, critical medical
resource allocation, and alleviation of avoidable burdens on both sides. Besides
that, this paper also tried to raise public’s awareness of data privacy and ethics
to encourage us to rethink our machine learning pipeline when building models for
supporting clinical decision-making.
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